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Abstract
The features of the moving large polaron are investigated within Holstein’s molecular crystal
model. The necessity to account for the phonon dispersion is emphasized and its impact on
polaron properties is examined in detail. It was found that the large polaron dynamics is
described by the nonlocal nonlinear Schrödinger equation. The character of its solutions is
determined by the degree of nonlocality, which is specified by the polaron velocity and group
velocity of the lattice modes. An analytic solution for the polaron wavefunction is obtained in
the weakly nonlocal limit. It was found that the polaron velocity and phonon dispersion have a
significant impact on the parameters and dynamics of large polarons. The polaron amplitude
and effective mass increase while its spatial extent decreases with a rise in the degree of
nonlocality. The criterion for the stability of large polaron is formulated in terms of the values
of the degree of nonlocality, the magnitude of the basic energy parameters of the system and the
polaron velocity. It turns out that the large polaron velocity cannot exceed a relatively small
limiting value. A similar limitation on large polaron velocity has not been found in previous
studies. The consequences of these results on polaron dynamics in realistic conditions are
discussed.

1. Introduction

It has been argued for a long time that the large polaron
may have a substantial role in the long distance charge
and energy transfer in quasi-one-dimensional conductors and
some biological macromolecules, such as the α-helix and
DNA [1–11]. These ideas were founded upon quite general
theoretical arguments [2, 12–14] which indicate that an excess
electron (hole, exciton, etc.) in a one-dimensional electron–
phonon system will always self-trap to form a one-dimensional
polaron, irrespective of the strength of the electron–phonon
interaction. The polaron spatial extent varies with the values
of system parameters and compact, soliton-like, large polaron
states extending over a few lattice sites appear in the adiabatic

3 Author to whom any correspondence should be addressed.

limit (electron bandwidth greatly exceeds maximal phonon
energy) provided that the intersite transfer energy exceeds the
electron–phonon coupling energy. This polaron is extremely
stable to external perturbations and may propagate through
the crystal as a robust, massive classical particle carrying
the charge and energy over large distances. For all these
reasons it was speculated that the transport processes in
various quasi-1D substances may be achieved by a polaronic
mechanism. Such a belief was supported by many examples
of experimental evidence of polaron formation in a broad
class of materials, such as quasi-1D conductors (MX-chains,
conducting polymers, etc.) [9, 15, 16].

On the theoretical side, the polaron problem has been
exhaustively investigated and we now have a comprehensive
description of polaron features over practically the whole
parameter space [1–14, 17–25]. Nevertheless, despite all
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these efforts, some details are still only poorly understood.
One of these problems concerns the large polaron motion in
quasi-one-dimensional molecular crystals, which has mainly
been studied within idealized 1D models. However, external
forces, disorder, three-dimensional effects, etc., are inevitable
in realistic conditions and should be taken into account in
the investigation of the possible role of polarons in transport
processes in these substances. One of the effects which was
not so far been satisfactory treated in polaron theory concerns
taking into account the influence of the phonon dispersion
on polaron properties. Namely, theoretical investigations
of polarons in 1D systems were mainly carried out within
the dispersionless (phonon dispersion is neglected) Holstein’s
molecular crystal model [2]. Such a practice greatly simplifies
particular calculations, but it is not generally acceptable and
may lead to erroneous results. In particular, some studies
of small polaron properties, in various contexts, have clearly
shown the necessity of accounting for phonon dispersion. Thus
for example, Zoli, Zoli and Das [19] found that ignoring
the phonon dispersion, even accounting for it within the
common weak dispersion approximation, would lead to the
overestimation of the polaron bandwidth and divergent site
jump probabilities in one-dimensional systems. Moreover, De
Raedt and Lagendijk [20] examined, numerically, the impact of
phonon dispersion on transition between free and self-trapped
electron states. They found significant correlations between
the gap in the optical phonon spectrum and the value of the
critical coupling constant below which the self-trapping (ST)
transition does not occur.

Dispersion of optical phonons has, until recently, been
mostly ignored in the studies of the large polaron motion.
Some recent investigations [17] imply that phonon dispersion
may be important for the proper description of the moving
Fröhlich polaron. On the other hand, to our best knowledge,
these effects have never been accounted for in studies of the
moving large polaron properties within Holstein’s molecular
crystal model. The aforementioned references [19, 20] do not
represent an exception in that sense, since they strictly focus on
other important issues such as the impact of phonon dispersion
on the polaron transition from the free to the ST state. In the
present paper we shall examine this hitherto ignored problem:
the impact of phonon dispersion on the properties of the
moving large polaron. Our research is motivated by the
assumed, possibly significant, role of the polaron mechanism
in charge and energy transfer in quasi-1D molecular structures.
Further analysis will be carried out within the adiabatic limit
in which formation of the large polaron is expected. We hope
that our efforts will shed some light on these problems.

In section 2 we review the main results of the traditional
adiabatic strong coupling theories, pointing out the limits
of their applicability. In section 3 the nonlocal nonlinear
Schrödinger equation for polaron wavefunction is derived.
Special attention is payed to the clarification of the continuum
approximation. In section 4 the explicit form of polaron
wavefunction is found in the weak nonlocal limit. Polaron
properties, in particular stability, are discussed on the basis of
that result. Section 5 contains the calculation of the polaron
effective mass and energy; finally, a brief survey of our results
is given in section 6.

2. Adiabatic large polaron preliminaries

The starting point of our analysis is the one-dimensional
Hamiltonian of Holstein’s molecular crystal model [2]

H = −J
∑

n,l=±1

A†
n An+l +

∑

q

h̄ωqb†
qbq

+ 1√
N

∑

q,n

Fq eiqn R0 A†
n An(bq + b†

−q). (1)

Here n labels lattice sites and R0 denotes the lattice constant
along the chain. Easy transfer along the chain is associated
with nearest neighbor transfer integral J ; operator A†

n(An)

describes the presence (absence) of the electron on the nth
lattice site; b†

q(bq) creates (annihilates) a phonon quanta with

the frequency ωq ; Fq = χ
√

h̄
2Mωq

denotes the electron–

phonon coupling parameter where χ represents the strength

of this interaction. Finally, ωq =
√

ω2
0 + ω2

1 cos q R0 denotes
the phonon frequency, where ω0 denotes the frequency of
the intramolecular oscillations, while ω1 characterizes the
vibrational energy transfer between neighboring sites. We may
assume that polaron spatial extent highly exceeds the lattice
constant. This justifies the continuum approximation, and for
the practical calculation we will use an approximate expression

ωq ≈
√

�2
0 − c2q2. Here �0 =

√
ω2

0 + ω2
1 while c =

√
R2

0ω
2
1

2 .

Polaron properties as well as the choice of the method
for its theoretical description are determined by the mutual
ratio of: 2J , the electron bandwidth, h̄�0, the maximal
phonon energy, and the small polaron binding energy EB =
1
N

∑
q

|Fq |2
h̄ωq

[13]. The last parameter denotes the energy gained
by the polaron formation in the transportless limit (J = 0)
when the carrier is confined to a single site. It is sometimes
termed the lattice relaxation energy, electron–phonon coupling
energy or lattice deformation energy [13]. In particular, most
aspects of polaron physics may be characterized in terms of just
two parameters: the adiabatic ratio B ∼ 2J

h̄�0
and the coupling

constant,S ∼ EB
h̄�0

. Sometimes, another coupling parameter,

λ ∼ EB
J , directly related to polaron size in units of lattice

constant (Lp/R0 ∼ 2J/EB), is used.
Large adiabatic polarons may be successfully described

using Pekar’s variational method [12]. It relies upon the
semiclassical treatment of a phonon subsystem which is
considered to be very slow as compared to the electronic one.
Accordingly, the polaron wavefunction may be decomposed
into the product of the electron and lattice part. The large
polaron motion has usually been studied by means of the
stationary Pekar’s method supplemented by the requirement
that the total momentum of the electron–lattice system is the
integral of the motion. In such an approach the polaron velocity
is introduced as a Lagrange multiplier [5]. An alternate
possibility represents the time dependent variant of this
method, now widely known as Davydov’s ansatz [3, 4, 22, 26].
It has some practical advantages and will be used here.

The unfounded application of the time dependent ansatz,
beyond the limits of the applicability of semiclassical approx-
imation, had raised some doubts as to its validity [26–28].
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This criticism is only partially justified, since, within the lim-
its of the applicability of the stationary theory of Pekar et al
[1, 2, 5, 8, 12], time dependent theory provides a reliable basis
for the description of large polaron properties. Nevertheless, in
order to avoid any possible confusion or doubts about the reli-
ability of our further results, we now briefly review the condi-
tions which ensure the applicability of the semiclassical varia-
tional approach. For a detailed discussion on that subject we re-
fer the reader to literature on the classical polaron [1, 2, 5, 12].
At this stage we emphasize only the main points: the valid-
ity of the semiclassical variational method of Pekar [12] and
its nonstationary counterpart [3, 4, 22] demands the fulfilment
of the adiabatic (2J � h̄�0) and strong coupling conditions
(S � 1). The first of these conditions provides the applica-
bility of the semiclassical factorization of the wavefunction,
while the second one ensures polaron stability in respect to
the linear modes. The latter condition originates from the de-
mand that phonons cannot excite an electron from the potential
well in which it is trapped. This means, quantitatively, that the
polaron binding energy exceeds the maximal phonon energy
EB � h̄�0 [8] and coincides with the strong coupling condi-
tion (S � 1). In addition, the applicability of the continuum
approximation demands that the polaron radius must exceed
the lattice constant (Lp/R0 > 1 ⇔ 2J > EB). This imposes
an upper bound on the value of the coupling constant which
cannot be arbitrarily large and must satisfy S < B . If S > B
the polaron radius is restricted to the lattice constant and forma-
tion of the adiabatic small polaron takes place. A detailed study
of the small to large polaron transition in the adiabatic limit is
presented in [23] within the dispersionless Holstein model.

Results of the recent numerical simulations [24] and
Monte Carlo simulations [25] confirm the validity of
the adiabatic variational method under the aforementioned
conditions. Hereafter, our analysis concerns the problem of the
moving large polaron and, therefore, we assume that system
parameters satisfy B � 1, S � 1 and S < B .

Concerning the relevance of our analysis to the
understanding of polaron properties in realistic conditions, we
emphasize that the aforementioned criteria could be satisfied
in a wide class of realistic substances. In particular, the
adiabatic criterion is satisfied in conducting polymers such
as polyacetylene and related materials [9], in which the
electron next neighbor overlap integral is in the range of a
few electron volts ∼2.5–5.6 eV; the characteristic phonon
frequencies are estimated to be of the order of 0.12 eV.
On the other hand, there is some controversy over the
estimates of the value of J in biological materials [11] so
that fulfilling the adiabatic condition in these materials is
questionable. In particular, the actual estimates of J in
DNA sometimes differ up to an order of magnitude; roughly
ranging from 0.02 eV [10] up to 0.2 eV [11]. Phonon
frequencies are typically about few 100 meV. The usually
quoted value of the electron–phonon coupling parameter in
conducting polymers is 4.1 eV Å

−1
[9] while, again, in

biological macromolecules a certain controversy exists as to
the actual value of this parameter. Some estimates implies
that its value is about ten times less than that of conducting
polymers: 0.6 eV Å

−1
[11]. Direct calculations confirm the

belief that the criteria are fulfilled for large polaron existence
in conducting polymers, while its formation in aforementioned
biological macromolecules is still open to question.

In the existing literature there are no reliable data on the
value of ω1 for any realistic substances. However, beginning
with the pioneering article by Holstein [2], it was usually
regarded to be very small in comparison with ω0. This
assumption does not hold in the general case. In particular, in
recent studies of the small polaron properties [19], it was found
that ω1 cannot be arbitrarily small. That is, it should not exceed
some minimal value determined by the system dimensionality,
magnitude of coupling constant and ω0. In one-dimensional
systems this threshold value approaches (2/3)ω0 in the strong
coupling limit. However, the aforementioned restrictions on
the values of ω1 strictly concern the small polaron limit in
which the quantum nature of the phonon field dominates and
should not be relevant for the present purposes. Thus we may
ignore the lower boundary for ω1 and we assume that it ranges
from zero up to a few tenth of ω0, for which we adopt the
typical value for one-dimensional conductors: ω0 ∼ 0.12 eV.
In such a way we may take it that �0 ranges up to 1.5ω0, which
cannot substantially affect the adiabatic condition due to large
values of the hopping term J .

Under the above conditions we may safely proceed as
proposed and we choose [3] the time dependent trial state as
follows

|�(t)〉 =
∑

n

�n(t)A†
n|0〉e ⊗ |β(t)〉,

∑

n

|�n|2 = 1.

(2)
Here �n denotes the electron wavefunction while the phonon
part is the functional of phonon coherent amplitudes. In
particular, |β(t)〉 is a multimode coherent state defined as the
total product of single mode phonon coherent states |β(t)〉 =∏

q |βq(t)〉 ≡ exp{∑q(βq(t)b†
q − β∗

q (t)bq)}|0〉ph.
Functions �n and βq will be treated as dynamical

variables and the evaluation of their evolution in time is
now our primary task. For that purpose we utilize the
time dependent variational principle from which we derive
the evolution equations demanding the stationarity of the
action functional A = ∫ t2

t1
L(�,�∗; βq; β∗

t ) dt , where

L(�,�∗; βq; β∗
t ) = ih̄

2 (〈�|�̇〉− 〈�̇|�〉)−〈�|H |�〉 denotes
system Lagrangian. Thus, imposing δA = 0, we obtain the
following set of Hamilton’s equations:

ih̄�̇n = δH
δ�∗

n

; ih̄β̇q = δH
δβ∗

q

. (3)

Here H ≡ 〈�|H |�〉 denotes the classical Hamiltonian
(Hamilton’s function).

The equation of motion for βq reads

ih̄β̇q = h̄ωqβq + 1√
N

∑

n

F−q e−iq·n R0 |�n(t)|2. (4)

This equation is readily solved after passing to a continuum
approximation and assuming that the polaron probability
density |�(x, t)|2 depends on time only through the coordinate
in the moving frame, i.e. |�(x, t)|2 = |�(x − vt)|2, where

3
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v represents the polaron velocity. Then, by virtue of the
substitution y = x − vt , equation (4) becomes an ordinary
inhomogeneous differential equation of the first order. Only
the stationary case, (v = const), will be considered hereafter.
This yields

βq(t) = βq(0)e−iωq t − 1√
N

F−q e−iqvt

h̄(ωq − qv)

∫
dx

R0
e−iqx |�(x)|2.

(5)
The first term corresponds to a homogeneous solution of
equation (4) and describes the influence of the phonon
fluctuations on the large polaron dynamics. It is irrelevant
in the present context and will be disregarded hereafter in
accordance with the common approximations used in adiabatic
large polaron theories. That is, in what follows we shall keep
only the particular solution of equation (4), corresponding
to the so called frozen (coherent) part of lattice distortion
coherently following the electron motion.

3. Nonlocal nonlinear Schrödinger equation

Substituting the particular solution for lattice amplitudes (5)
into the equation of motion for the polaron wavefunction we
obtain the nonlocal nonlinear Schrödinger equation (NLNSE)

ih̄�̇(x, t) + J R2
0�xx (x, t)

+ 2E0
B

∫
dx ′

R0
K(x − x ′)|�(x ′, t)|2�(x, t) = 0, (6)

where E0
B = χ2

2M�2
0

is the small polaron binding energy in

the continuum approximation for phonon modes, while K(x)

denotes the following Green function

K(x) = 1

N

∑

q

eiqx

1 − ζ 2q2
≈ R0

2π

∫ π/R0

−π/R0

dq eiqx

1 − ζ 2q2
. (7)

It accounts for the nonlocality of the electron–phonon
interaction, whose range is determined by the magnitude of the

correlation length: ζ = R0ω1√
2ω0

√
1+(v/c)2

1+(ω1/ω0)
2 .

Equations of the above type arise in the theoretical
description of various phenomena including: many-body
quantum systems treated in Hartree approximation, optics,
plasmas, Bose–Einstein condensation, etc. [29–33]. The
character of the solutions of the above equation is determined
by the magnitude of the ratio of the interaction range, ζ ,
and the characteristic scale of the spatial variation of the
wavefunction (the polaron radius in the present case). One
may get an intuitive insight into how this ratio affects the
solutions of the NLNSE (6) by means of a scale change of
the polaron wavefunction [33] �(x) → 1√

lp
�( x

lp
), where

parameter lp = Lp/R0 has the meaning of the polaron
radius in units of the lattice constant. After some simple
manipulation, including variable changes x → x/ lp and q →
qlp, followed by the replacement of the integration boundary
in equation (7) π/R0 → π/(R0/ lp), this procedure results in
a mathematically identical evolution equation but with scaled
coefficients and correlation length ζ(Lp) = ζ/Lp. In the
present case this ratio may be regarded to be very small. This

is ensured by the assumed smallness of the ratio ω1/ω0 and the
fact that the large polaron, by definition, is spread over a large
number of lattice sites. Under these circumstances the soliton
(polaron) spatial extent highly exceeds the characteristic extent
of nonlocality, so that ζ/Lp � 1 provided that the polaron
velocity is not too large. This case is known in the literature
as the weakly nonlocal limit. It may successfully be treated
approximately by expanding the kernel (7) in terms of the small
parameter ξ 2 (ξ = ζ/R0, the nonlocality parameter). Note,
however, that the increasing of the polaron velocity towards
the minimum optic phonon phase velocity, cp = �0 R0/π , may
violate the validity of such an approximation. Therefore, our
analysis hereafter concerns the limit v � �0 R0/π , so that we
may safely approximate kernel (7) as follows:

K(x) ≈
(

1 − ξ 2 ∂2

∂x2

)
δ(x). (8)

Consequently, equation (6) becomes

i�τ(x, τ ) + �xx (x, τ ) + |�(x, τ )|2�(x, τ )

− ξ 2 ∂2|�(x, τ )|2
∂x2

�(x, τ ) = 0. (9)

Here the integration limit in equation (7) is extended towards
infinity, which is justified if the polaron size greatly exceeds
the lattice constant.

For practical reasons the last two equations were written in
a dimensionless form introducing the new ‘time’ (τ = t J/h̄)

and ‘spatial’ x ′ = x/R0 variables, while � =
√

2E0
B

J �

denotes the renormalized polaron wavefunction. Primes will
be neglected hereafter, i.e. x ′ → x . It is obvious that the
nonlinear dynamical behavior of this system, as well as its
stationary states, crucially depend on the interplay of the local
and derivative nonlinear terms.

4. Polaron solution in the weak nonlocal limit

We search for the solutions of the above equation in the form
�(x, τ ) = eikx+i(�−k2 )τ φ(u), where the polaron envelope φ

is a real, symmetric and exponentially localized (φ(0) =
φ0, φ(±∞) = 0) function of the polaron coordinate in the
moving frame u = x − ντ (ν = v h̄

J R0
, the polaron velocity in

dimensionless units). Separating the imaginary and real parts
in equation (10) we found k = ν/2, while the equation for the
polaron profile reduces to

φuu − �φ + φ3 − ξ 2
(
φ2

)
uu φ = 0. (10)

Its first integral is

φ2
u(1 − 2ξ 2φ2) + 1

2φ2(φ2 − 2�) = C. (11)

Imposing the polaron initial conditions φ(0) = φ0 and φu(0) =
0 we found the relation connecting the soliton amplitude and
frequency, φ2

0 = 2�. On the other hand, the boundary
conditions φ(±∞) = 0 and φu(±∞) = 0 yield C = 0, so
that the equation for the polaron profile reduces to

φ2
u = 1

2

φ2(φ2
0 − φ2)

1 − 2ξ 2φ2
. (12)

4
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Final integration may be achieved by virtue of the
substitution φ = φ0 cosh ϕ(u), which yields the exact solution
for the polaron profile in the implicit form

±u = − 1√
2φ0

ln

∣∣∣∣∣∣

φ0

√
1 − 2ξ 2φ2 +

√
φ2

0 − φ2

φ0

√
1 − 2ξ 2φ2 −

√
φ2

0 − φ2

∣∣∣∣∣∣

+ 2ξ ln
2ξ

√
φ2

0 − φ2 + √
1 − 2ξ 2φ2

√
1 − 2ξ 2φ2

0

. (13)

In the local limit (ξ = 0) only the first term survives
and the above solution attains a typical bell-shaped soliton
form. In the case of a nonvanishing nonlocality the two
components of this solution compete with each other causing
deformation of the soliton profile: an increase of the polaron
amplitude followed by a reduction of its spatial extent. The
degree of these modifications is determined by the polaron
amplitude, which must be evaluated in terms of system
parameters. For that purpose we exploit the normalization
condition

∫ ∞
−∞ dx/R0|�|2 = 1 ⇔ ∫ ∞

−∞ dx |�|2 = 2E0
B/J .

This integral may be easily evaluated by employing the identity∫ |�|2 dx = ∫
φ2 du ≡ ∫

φ2/φu dφ, which finally yields the
implicit equation for the polaron amplitude

N = �0 + (1 − �2
0)

2
ln

∣∣∣∣
1 + �0

1 − �0

∣∣∣∣. (14)

For convenience, the scaled variables: norm N = 2E0
Bξ

J , profile

function � = √
2ξφ and amplitude �0 = √

2ξφ0 were
introduced.

One cannot find the exact solution of equation (14) for
polaron amplitude �0 for an arbitrary value of the rescaled
norm. However, instead, one may plot norm N as a
function of �0, which may be easily inverted to give the
desired dependence of the polaron amplitude on the system
parameters. Results are presented in figure 1. Note that, by
virtue of the equation (13), which imposes 2ξ 2φ2

0 < 1, all
physically meaningful solutions of the last equation lie in the
interval 0 < �0 < 1. Looking at this curve as a function
�0 = �0(N ), we observe that the polaron amplitude is a two-
valued function of its norm. That is, equation (14) has two
solutions for �0 for all values of scaled norm (N ) satisfying
N � NM, where NM is the maximum of the norm. However,
due to the Vakhitov–Kolokolov [35] criterion, ∂N

∂φ0
> 0, linearly

stable polaron solutions, i.e. solutions stable with respect to
longitudinal perturbations, may exist only for �0 < �M

0 . Here
�M

0 denotes the position of the maximum of the curve N (�0).
We found �M

0 and NM, demanding ∂N
∂�0

= 0, which yields

�M
0 ln

∣∣∣∣
1 + �M

0

1 − �M
0

∣∣∣∣ = 2. (15)

Combining the last equation and (14) we obtain

NM�M
0 = 1. (16)

Equation (15) has the following solution: �M
0 ≈ 0.835 so

that NM ≈ 1.198. In such a way, the above established large

Figure 1. Scaled polaron norm N versus scaled amplitude �0. The
dotted line corresponds to an approximate cubic curve fitting well to
the exact result in the limit �0 � 1.

polaron stability condition reads

ξ < 0.599
J

E0
B

. (17)

It imposes the upper limit on the value of nonlocality
parameter, over which an increase, for example due to a
velocity increase, may destabilize the polaron. However, it
may happen only for a comparably narrow polaron, since the
applicability of the continuum approximation demands 2J

E0
B

>

1. Apart from this, violation of the above criterion takes
place for very large values of nonlocality parameter which are
outside the range of the approximation employed here.

In figure 2 we have plotted the polaron profile versus the
coordinate in the moving frame whilst varying the nonlocality

parameter for a few fixed values of the ratio E0
B

J . Evidently,
for each particular value of this ratio the polaron profile has a
typical bell-shaped form. The polaron amplitude and spatial
extent are very sensitive to any change of this ratio: any rise
of its magnitude results in a rise of the polaron amplitude
followed by a reduction of its spatial extent. For each fixed
value of E0

B/J , the impact of nonlocality is manifested through
a moderate amplitude increase and the shrinking of its spatial
extent with a rise of ξ . The degree of these changes is pretty
small with respect to the ones arising due to the modification
of E0

B/J . Nevertheless, the predicted effects may be quite
significant for large values of this ratio which, however, cannot
be arbitrarily large due to applicability of the continuum
approximation, which demands E0

B/2J � 1. The decrease
of this ratio reduces the impact of the nonlocality parameter
so that predicted the effects become negligible for a very wide
polaron (E0

B/J � 1). It may be more clearly seen from the
explicit approximate expressions for the polaron amplitude and
width

φ0 ≈ E0
B√

2J

[
1 + 1

3

(
E0

B

J

)2

ξ 2

]
, (18)

5
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ξ
ξ
ξ

ξ
ξ
ξ

u u

Figure 2. Polaron profile for a few different values of nonlocality parameter and ratio E 0
B/J .

Figure 3. Polaron amplitude and width versus nonlocality parameter for a few different values of E 0
B/J .

lp ∼
√∫ (

x

R0

)2

|�(x)|2 dx

R0
≈ l0

p

√

1 − 0.74

(
E0

B

J 2

)2

ξ 2.

(19)
Here l0

p ∼ π J√
2E0

B
denotes the polaron width, in units of the

lattice constant R0, in the dispersionless limit. In deriving
these expressions we exploited the fact that, as demonstrated in
figure 1, for the region where a stable solution for the polaron
amplitude appears, N (ξ) may be successfully approximated by
the cubic function N ≈ 2�0 − 2

3�
3
0.

In figure 3 we plot (a) the polaron amplitude and (b)
the width measured in units of lattice spacing as a function
of nonlocality parameter for a few different values of the
ratio E0

B/J . The polaron width (amplitude) monotonically
decreases (increases) with the nonlocality parameter. The
degree of these changes must be estimated taking into account
the applicability of the continuum approximation, which
means that E0

B/J < π√
2
. Decreasing this ratio enhances

the validity of the continuum approximation but, as shown in
figure 2, lowers the magnitude of the above predicted changes

of polaron parameters which therefore become imperceptible
for very large polarons.

5. Large polaron effective mass and ground state
energy

We now focus on the evaluation of the large polaron energy,
momentum and effective mass. This is of crucial importance
for the understanding of the polaron dynamics, in particular
the study of its mobility, in realistic conditions. Since the
polaron is supposed to behave as a classical (Newtonian)
particle we pursue the common procedure. It consists in
the evaluation of the large polaron energy and momentum
taking the expectation values of the operator of the total
momentum P̂tot = P̂e + P̂ph and system Hamiltonian (1)
in the trial state (2) within the continuum approximation.
Then we evaluate the polaron effective mass by means of the
relation meff = ∂ Ptot

∂v
|v=0. Here P̂e = h̄

∑
k k A†

k Ak(Ak =
1√
N

∑
n Aneikn R0 ) and P̂ph = h̄

∑
q qb†

qbq denote electron and

6
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Figure 4. Polaron ground state energy and effective mass versus nonlocality parameter for different values of E 0
B/J and coupling constant.

phonon momentum, respectively. After some straightforward
manipulations we obtain Ptot = ih̄

2 (
∫

dx
R0

�(x, t) ∂
∂x �∗(x, t) −

c.c.) + h̄
∑

q q|βq|2, which, by virtue of equation (4), and
together with the assumed form of electron wavefunction,
attains the following form

Ptot = m∗v
(

1 + J 2

2m∗E0
B�2

0 R2
0

I (ξ, φ0)

)
. (20)

In a similar way we obtain

E = m∗v2

2

(
1 + J 2

2m∗E0
B�2

0 R2
0

I (ξ, φ0)

)

+ J 2

E0
B

I ′(ξ, φ0) − J 2

2E0
B

I ′′(φ, ξ), (21)

where I (�0, ξ) = 8
∫ ∞

0 dx φ2
xφ

2, I ′(ξ, φ0) = 2
∫ ∞

0 dx φ2
x , and

I ′′(ξ, φ0) = 2
∫ ∞

0 dx φ4 + I (�0, ξ). Their explicit expressions
are given in the appendix.

The dependence of E on polaron momentum is given
parametrically, through v, by equations (20) and (21), from
which we easily find

v = ∂ E

∂ Ptot
, (22)

which proves that v is the polaron velocity.
Expanding the above integrals in powers of the small

parameter and keeping only the leading order terms in ξ 2, we
obtain approximate expressions for the polaron ground state
energy (EGS ≡ E(v = 0)) and effective mass.

EGS ≈
[
−1 + 3

5

(
E0

B

J

)2

ξ 2
0

]
E0

B
2

12J
, (23)

meff ≈ m0
eff

{
1 + 0.298S2ξ 2

0 (
E0

B
J )4

1 + 0.133S2(
E0

B
J )2

}
. (24)

Here ξ0 ≡ ξ(v = 0), while m0
eff = m∗[1 + (

2SE0
B

15J )2] denotes
polaron effective mass in a dispersionless limit and coincides
with the previously obtained one [2, 7, 8], which may be
seen by expressing the coupling constant and adiabatic ratio in
terms of the originally introduced parameters. Evidently, the

polaron ground state energy and effective mass both increase
monotonically with the nonlocality parameter.

In figures 2–4 we have plotted the dependence of the
polaron amplitude, width, ground state energy and effective
mass on the nonlocality parameter. We chose values of system
parameters which satisfy the criteria for the existence of the
large polaron. In general, the degree of the predicted changes
depends substantially on the polaron radius i.e. ratio E0

B/J .
More precisely, the predicted effects are most significant for
polarons which are not too large, and gradually vanish with a
rise of polaron size. The most significant consequences could
be for polaron effective mass, which may be considerably
larger than that calculated without accounting for phonon
dispersion. For the chosen set of system parameters the
effective mass enhancement may go up to 15%. So large
modification of the effective mass may affect the polaron
dynamics substantially and, therefore, should be taken into
account in the examination of polaron motion under the
influence of external forces, in particular the electric field. In
addition, polaron stability may be violated due to an increase
of the ground state energy. Namely, the polaron, by definition,
represents the most energetically favorable state. Therefore, its
energy should be lower than the energy of free (band) states and
condition EGS < 0 must be satisfied. This yields the criterion
for the energetic stability of the Holstein’s large polaron

ξ0 < 1.29
E0

B

J
. (25)

Apparently, it is always satisfied provided that the linear
stability condition (17) holds.

6. Concluding remarks

We have studied the motion of the Holstein’s large polaron
within the adiabatic approximation. This study in many
respects differs from the previous ones [2, 7, 6]. In particular,
the necessity of accounting for the phonon dispersion in the
proper treatment of polaron motion is elaborated and taken
into account explicitly. As a result we have derived the
nonlocal nonlinear Schrödinger equation (NLNSE). It is solved

7
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in the weakly nonlocal limit ξ � 1, which reveals some
unknown details of large polaron physics. In particular, we
found that the polaron velocity and phonon dispersion have
a substantial impact on the large polaron stability and values
of its parameters. It is determined by the magnitude of the

so called nonlocality parameter ξ = ω1√
2ω0

√
1+(v/c)2

1+(ω1/ω0)
2 . In

particular, the polaron amplitude and effective mass increase,
while its spatial extent decreases with a rise of nonlocality
parameter. These effects are most significant for large value
of E0

B/J , a comparably narrow polaron, and vanish as it
decreases.

Nonlocality effects are especially important for the
polaron effective mass, whose gain may exceed 10%. It is
determined by the magnitude of the ratio E0

B/J . This indicates
the necessity of accounting for the impact of these effects in
the analysis of large polaron dynamics, for example mobility,
in realistic conditions.

The predicted behavior of the large polaron effective mass
as a function of the nonlocality parameter is quite the opposite
of that of the nonadiabatic small polaron, which decreases with
a rise of ω1. In such a way, the intermolecular forces, which
are the origin of the nonlocality effects, have a twofold role
on the polaron features, depending on whether the quantum or
classical nature of the phonon field prevails. In particular, these
forces modify the character of the electron–phonon interaction,
which becomes effectively long ranged: the electron located at
the nth site of the molecular chain interacts with the molecule
in the same site, directly, and indirectly, through these forces,
with the neighboring ones. Consequently, a larger number
of surrounding molecules are engaged in polaron formation
and motion which, in certain circumstances, may result in an
additional increase of its effective mass. On the other hand,
an increase of ω1 decreases the coupling constant and hardens
the lattice which, therefore, became less deformable and less
sensitive to the electron motion. In such a way, intermolecular
forces may also have the opposite tendency and, in the final
instance, may cause a decrease of the effective mass. These
two opposite tendencies are balanced by the magnitude of ω1

relative to J . Our results clearly showed that an increase of
the effective mass as a function of nonlocality degree occurs
in the adiabatic regime. Consequently, the opposite tendency
should occur in the nonadiabatic regime. The physical grounds
for such an expectation lies in the fact that an increase of
ω1 increases the maximal phonon frequency and violates the
adiabatic condition and, in the final instance, may change the
character of the dependence of the polaron parameter as a
function of ω1 or equivalently on nonlocality degree.

To prove the above expectations directly we refer to the
seminal papers of Holstein [36] and Lang and Firsov [37],
who demonstrated the exponential dependence (growth) of the
small polaron effective mass as a function of the coupling
constant: meff/m0 ∼ eS. As pointed out above, the
inclusion of the phonon dispersion hardens the vibrational
spectrum, decreases the coupling constant, which yields S ∼

S0√
(1+(ω1/ω0)

2)3
(S0 refers to the coupling constant in the absence

of phonon dispersion), and leads to a decrease of the polaron
effective mass as a function of the nonlocality degree.

Unfortunately, neither the semiclassical approach nor the
usual small polaron theories can describe polaron behavior
in the intermediate region and cannot precisely determine the
values of the system parameters for which a particular tendency
would prevail. We shall deal with this intriguing question in
the subsequent article. However, in order to demonstrate the
crucial role of the adiabatic parameter in that respect, we refer
to the more sophisticated approaches [19, 18] for the evaluation
of meff. These methods yield a slightly more complicated
expression for the effective mass (meff/m0 ∼ e f (B,S,ξ ;e− f )),
in which the band narrowing factor f (B, S, ξ; e− f ) is defined
through a self-consistent relation. However, as far as
the nonadiabatic condition is satisfied, the effective mass
qualitatively displays the same behavior as predicted by the
Holstein and Lang–Firsov approaches. An increase of the
adiabatic ratio reduces the band narrowing factor, which
becomes negligible in the adiabatic limit 2J � h̄�.

A particularly interesting aspect concerns the impact of
the nonlocality on polaron stability. In that respect we recall
that in the dispersionless phonon Holstein model large polaron
dynamics is described within the local cubic nonlinear NSE. Its
exact integrability automatically provides the extreme stability
of polaron solutions with respect to external perturbations
(linear stability). That is, provided that the aforementioned
basic assumptions for large polaron existence–adiabatic strong
coupling limit and applicability of continuum approximation–
are satisfied, the large polaron is always stable for any values of
system parameters. Quite to the contrary, due to the inclusion
of phonon dispersion the integrable NSE is replaced by its
nonintegrable counterpart, which imposes certain restrictions
on the allowed values of system parameters. In particular,

linearly stable polaron solutions may appear only for E0
B

J <
0.599

ξ
.
Let us finally comment on the impact of the polaron

velocity on its properties. In particular, an increase of polaron
velocity enlarges the degree of nonlocality and consequently
modifies the soliton parameters, both the amplitude and width,
and, in the final instance, may destabilize polaron. This is
quite similar to the dependence of these parameters on polaron
velocity, as in the case of the acoustic polaron. In the present
case these effects are not so important and range up to a few
per cent only. Moreover, due to the above established stability
criterion, the polaron velocity cannot exceed the critical value

vc =
√

v2
M − c2. Here vM = 0.36�0 R0(J/E0

B) represents
the maximal velocity of a large polaron in the dispersionless
limit. It is substantially less than the minimal phase velocity of
optic phonons, which Wilson [6] conjectured as that supposed
to be the maximal velocity which Holstein’s large polaron
may attain. Otherwise, a catastrophe would appear in the
large polaron parameters when its velocity approaches the
minimum optic phonon phase velocity. Our analysis suggests
that the gradual change of the polaron parameters and its
destabilization due to an increase of velocity must emerge long
before this catastrophe can arise.

To date the influence of the phonon dispersion and
velocity on large polaron properties in the adiabatic limit has
not been taken into account within Holstein’s model. In
particular, to the best of our knowledge, the influence of the

8
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polaron velocity on polaron properties was only considered in
Wilson’s paper [6], but without taking into account the phonon
dispersion. Therefore, no quantitative comparison is possible
with the present results. However, in comparison with the
related problem, the motion of the Fröhlich large polaron, we
obtain the analogous results concerning the influence of the
phonon dispersion on polaron stability. Quite to the contrary,
the effective mass of the Fröhlich large polaron decreases
with an increase of the phonon group velocity. This effect is
the consequence of the very different low dispersion (ωq =√

ω2
0 + u2q2, where u is the group velocity) of the polar optical

phonons participating in Fröhlich large polaron creation.
In conclusion we emphasize that our analysis indicates

that one should treat the problem of large adiabatic
polaron motion much more caution than before. In
particular, the inclusion of phonon dispersion and the explicit
dependence of the polaron parameters on its velocity are
necessary. Considerable effects are expected for polaron
kinetic parameters, for example mobility, which implies the
importance of the present results in the interpretation of the
experimental data concerning charge and energy transfer in
realistic media.
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Appendix

I (�0, ξ) = 1

32
√

2ξ 5

{
3ξφ0 − 2ξ 3φ3

0

+ 1

2
√

2
(4ξ 4φ4

0 + 4ξ 2φ2
0 − 3) ln

∣∣∣∣
1 + √

2ξφ0

1 − √
2ξφ0

∣∣∣∣

}
,

I (�0, ξ) ≈ 2φ5
0

15
√

2

[
1 + 4

7
ξ 2φ2

0

]
. (26)

I ′(�0, ξ) = φ0

4
√

2ξ 2
− (1 − 2ξ 2φ2

0)

16ξ 3
ln

∣∣∣∣
1 + √

2ξφ0

1 − √
2ξφ0

∣∣∣∣,

I ′(�0, ξ) ≈ φ3
0

3
√

2

[
1 + 2

5
ξ 2φ2

0

]
, (27)

I ′′(�0, ξ) =
√

2φ0

16ξ 2
(1 − 6ξ 2φ2

0)

− 1

32ξ 3
(1 − 2ξ 2φ2

0)(1 + 6ξ 2φ2
0) ln

∣∣∣∣
1 + √

2ξφ0

1 − √
2ξφ0

∣∣∣∣

I ′′(�0, ξ) ≈ 2
√

2

3

(
1 − 4

5
φ2

0ξ
2

)
φ3

0 . (28)
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[24] Barišić O S 2007 Europhys. Lett. 77 57004
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[32] Królikowski W and Bang O 2000 Phys. Rev. E 63 016610
[33] Garcia-Ripoll J J, Konotop V V, Malomed B and
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